Energy Systems
a balance act

Dag Henning

Optensys
ENERGIANALYS

Linköping
Sweden

dag.henning@optensys.se

12-05-31

www.optensys.se
Outline

• District heating resources
• Swedish district heating
• Changing heat demand
• District-heating development
• Benefits of district heating
Optensys offers energy consultancy services, primarily:

- Analyses of electricity and district-heating supply
- Surveys of energy demand and resources
- Municipal energy issues
- Sustainable energy scenarios

Optensys analyses interplay between energy supply and energy conservation.
Energy supply and use in Europe

Losses by energy conversion, mainly electricity generation

Heat demand
District heating sources

- Biomass fuels
- Energy from waste
- Combined Heat and Power (CHP)
- Industrial Surplus Heat
- Surplus heat from automotive biofuel production
- Surplus heat from auto-motive biofuel production
- Heat pumps
- Solar, geothermal
- Fossil fuels for peak load

Heat market
District Heating in Sweden

- 9 million inhabitants
- 50 TWh district heating
- 50% of total heat market
- 650 urban areas have district heating
- District heating in every municipality with more than 10,000 inhabitants
District heating supply

Common plant types and energy flows for a local Swedish utility

Combined heat and power production

Gas → CHP

Waste → CHP

Wood → Heat-only boilers

Oil → Industrial waste heat

Electricity grid

Heat pump

DH network

Heat demand

Electricity market

DH system in Göteborg (Gothenburg)

Dag Henning
Condensing power plants and Combined Heat and Power plants
District heating production

A Swedish example

Dag Henning
Marginal cost for district heating production

Example

Dag Henning
Cash flow for new DH system

Investment
Operation
Revenue
Accumulated net cash flow

Year

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Dag Henning
12th International Symposium on District Heating and Cooling, Tallinn, Estonia, 7 Sept 2010
The district heating value chain

District heating company

- Fuel
- Preparation
- Storage
- Production
- Distribution
- Sales
- Heat exchanger
- Indoor climate
Low-energy houses

• Thick insulation
• Windows of high standard
• Ventilation with heat recovery
• Solar heating

• Higher investment cost
• Lower operation cost
• Lower energy use
Climate change

GWh

Space heating

Hot tap water etc

År

2000 2020 2040 2060 2080 2100

Dag Henning
Köpmanholmen

1 kWh/m² of land and year
4
5-7
8-9
10-13
23-28

1-19 District number
S Single-family houses
M Multi-family houses
I Industry
V Service
1950 etc Average erection year
12 ha etc Size in hectares

Dag Henning
Ulf Ranhagen

Indehällning grundad på workshop 06/10/03, byggnadernas nybyggnadsår, användning
Enable DH use in areas with low heat demand

- Use district heating for new purposes
 - Dish washers
 - Washing machines
 - Tumble dryers
 - Industry
 - Cooling
- Solar electricity rather than solar heat
- Fair competition with individual gas and electricity use: regulations, prices, etc
Switching from electric heating to district heating from a CHP plant

Other electricity production reduces electricity demand

CHP plant increases electricity production

District heating network

Switching
Cooling with heat

- Reduces electricity consumption
- Increases heat demand during summer and
- electricity generation in CHP plants

Dag Henning
Possible future production of district heating, electricity, steam, cooling and biofuel
Estimated local renewable fuel resources

- **Forest branches etc.**
 - Now: 100 GWh/year
 - Utilise present coppice and devastated forest areas etc

- **Straw**
 - Now: 1200 GWh/year

- **Waste**
 - Now: Waste quantities increase to Czech level

GWh = gigawatthour = 1 million kilowatthours (kWh)

Niš city region in Serbia

Rest of Nišavski district

Dag Henning
Possible development of district-heating production in Niš, Serbia

- **El** = electricity
- **Bio** = biomass fuel
- **GWh** = gigawatthour = 1 million kilowatthours (kWh)
- **CHP** = Combined heat and power (plant or production)

Graphic Description:

- **2010**
 - Reference: 100 GWh/year
 - Small bio: 50 GWh/year
 - Large bio: 50 GWh/year

- **2015**
 - Reference: 200 GWh/year
 - Small bio: 100 GWh/year
 - Large bio: 100 GWh/year

- **2020**
 - Reference: 400 GWh/year
 - Small bio: 200 GWh/year
 - Large bio: 200 GWh/year
 - Waste CHP: 100 GWh/year
 - 2 CHP: 200 GWh/year

- **2025**
 - Reference: 500 GWh/year
 - Small bio: 300 GWh/year
 - Large bio: 300 GWh/year
 - Waste CHP: 200 GWh/year
 - 2 CHP: 400 GWh/year

Legend:

- Green: Heat from biomass CHP
- Orange: Heat from gas boilers
- Dark Red: Heat from waste
- Light Green: Heat from biomass boiler
- Brown: El from waste
- Light Grey: El from biomass

Note:

- Dag Henning
- Optensys
- ENERGIANALYS
Benefits of renewable CHP

• Low fuel demand in CHP plants due to high efficiency
• Wood fuel use initiates local biomass industry and promotes local business
• Using waste fuel reduces landfilling of waste
• Utilisation of local renewable energy resources means higher security of energy supply and reduces CO₂ emissions
Influencing energy demand

- Energy conservation reduces energy demand
- Load management reduces capacity demand
- Energy carrier switching e.g. from electricity to fuel or district heating
Production of district heating, electricity, steam and cooling

- Cold winter days
- Oil-fired boilers
- Wood-fired Heat-only boiler
- Wood-fired Combined Heat and Power plant
- Steam supply to industry
- Absorption cooling
- Waste incineration / surplus heat from industries for hot tap water and industries
District heating systems are valuable assets, which enable efficient resource utilisation.

dag.henning@optensys.se

mobile +46 70 536 59 22

www.optensys.se